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Abstract. The linear σ model with broken U3 × U3 is compared with data of the lightest scalar and
pseudoscalar mesons. When 5 of the 6 parameters are fixed by the pseudoscalar masses and decay constants,
one finds that, already at the tree level, one has a reasonable description for the 4 scalar masses, describing
mixing and up to 8 trilinear couplings of lightest scalars, taken as a0(980), f0(980), σ(≈ 500) and K∗

0 (1430).
This clearly indicates that these scalars are the chiral partners of the π, η, η′, K, and this strongly suggests
that they, like the latter, are (unitarized) qq̄ states.

1 Introduction

As is well known the naive quark models (NQM) fails
badly in trying to understand the lightest scalars, the
a0(980), f0(980), K∗

0 (1430) and the σ(400–1200), which
we shall here call σ(500). Therefore, today most authors
want to give the a0(980), f0(980) and the σ(500) other
interpretations than being qq̄ states. Popular alternative
interpretations are KK̄ bound states, 4 quark states, or
for the σ, a glueball. But there is also an obvious reason
for why the NQM fails: Chiral symmetry is absent in the
NQM, but is crucial for the scalars. Chiral symmery is
widely believed to be broken in the vacuum, and two of
the scalars (σ and f0) have the same quantum numbers
as the vacuum. Thus to understand the scalar nonet in
the same way as we believe we understand the vectors
and heavier multiplets, and to make a sensible compari-
son with experiment, one must include chiral symmetry
in addition to flavor symmetry into the quark model.

The simplest such chiral quark model is the linear
U3 × U3 sigma model with 3 flavors. In this case we can
treat both the scalar and pseudoscalar nonets simultane-
ously and on the same footing, automatically getting small
masses for the pseudoscalar octet, and symmetry break-
ing through the vacuum expectation values (VEV’s) of the
scalar fields.

As an extra bonus we have in principle a renormal-
izable theory, i.e. “unitarity corrections” are calculable.
In fact, in the flavor symmetric (u = d = s below) limit
many of the unitarity corrections can be considered as
being already included into the mass parameters of the
theory, once the original 4–5 parameters are replaced by
the 4 physical masses for the singlet and octet 0−+ and
0++ masses, and the pseudoscalar decay constant.

Unfortunately this model, over 30 years old, [1] has had
very few recent phenomenological applications, although
important exceptions are the intensive efforts of Scadron

λ λ′
Fig. 1. Graphical quark line representation of the λ and λ′

terms of (1)

and collaborators [2]. The reestablishment [3,4] of the light
and broad σ has also more recently revitalized the interest
in the linear sigma model [5–7].

2 The linear sigma model with 3 flavors

The well-known linear sigma model [1] generalized to 3
flavors with complete scalar (sa) and pseudoscalar (pa)
nonets has at the tree level in the Lagrangian the same
flavor and chiral symmetries as massless QCD. The U3 ×
U3 Lagrangian with a symmetry breaking term LSB is

L =
1
2
Tr

[
∂µΣ∂µΣ†] − 1

2
µ2Tr

[
ΣΣ†] − λTr[ΣΣ†ΣΣ†]

−λ′ (Tr
[
ΣΣ†])2

+ LSB. (1)

Here Σ is a 3×3 complex matrix, Σ = S+iP =
∑8

a=0(sa+
ipa)λa/21/2, in which λa are the Gell-Mann matrices, nor-
malized as Tr[λaλb] = 2δab, and where for the singlet
λ0 = (2/Nf )1/21 is included. Each meson in (1) has a def-
inite SU3f symmetry content, which in the quark model
means that it has the same flavor structure as a qq̄ meson.
Thus the fields sa and pa and potential terms in (1) can
be given a conventional quark line structure [8] (Fig. 1).

The symmetry breaking terms are most simply:

LSB = εσσuū+dd̄ + εss̄σss̄ + β[detΣ + det Σ†], (2)



360 N.A. Törnqvist: Comparing the broken U3 × U3 linear sigma model with experiment

which gives the pseudoscalars mass and break the flavor
and UA(1) symmetries. The stability condition, that the
linear terms in the fields must vanish after the shift of
the scalar fields (Σ → Σ + V ), determines the small pa-
rameters εi in terms of the pion and kaon masses and
decay constants. One finds εσ = m2

πfπ, εss̄ = (2m2
KfK −

m2
πfπ)/21/2, while β in the UA(1) breaking term is deter-

mined by mη′ , or by m2
η + m2

η′ .
My fit to the scalars with the unitarized quark model

(UQM) [9] is essentially a unitarization of (1) with λ ≈ 16
and λ′ = 0, and with the main symmetry breaking gener-
ated by putting the pseudoscalar masses at their physical
values. The model was used as an effective theory with a
symmetric smooth 3-momentum cutoff 0.54 GeV/c given
by a gaussian form factor. Such a form factor is natu-
ral, since physical mesons are of course not pointlike, but
have a finite size of 0.7–0.8 fm. (See the discussion in con-
nection to (37) below.) The fit included the Adler zeroes
which follow from (1), but only approximates the crossing
symmetry.

Here I shall study the theory at the tree level, leaving a
detailed discussion of the unitarization for future work. In
fact, when tadpole loops are included in the unitarization
the “unitarity corrections” to the masses should not be
too large, since the tadpole loops partly cancel the (log Λ
divergence in) s-channel hadron loops. One expects the
corrections to the mass spectrum to be at most of the
same order as the flavor symmetry breaking. Because of
the renormalizability, one can in the flavor symmetric limit
include the unitarity corrections into the mass parameters,
which are fixed by experiment.

Equation (1) without LSB is clearly invariant under
Σ → ULΣU†

R of U3 × U3. After shifting the flavorless
scalar fields by the VEV’s (Σ → Σ + V ) to the mini-
mum of the potential, the scalars acquire masses and also
the pseudoscalars obtain a (small) mass because of LSB.
Then the λ and λ′ terms generate trilinear spp and sss
couplings, in addition to those coming from the UA(1)
symmetry breaking determinant term. The λ term, which
turns out to be the largest, obeys the OZI rule, while the
λ′ and β terms violate this rule.

3 Tree-level masses

It is an ideal problem for a symbolic program like Maple V
to calculate the predicted masses and the couplings from
the Lagrangian. It has 6 parameters, µ, λ, λ′, β, u = d and
s, of which the last two define the diagonal matrix V with
the flavorless meson VEV’s: V = diag[u, d, s]. These are at
the tree level related to the pion and kaon decay constants
through u = d = 〈σuū,dd̄〉/21/2 = fπ/21/2 (assuming ex-
act isospin symmetry) and s = 〈σss̄〉 = (2fK − fπ)/21/2.
One finds, denoting the often occurring combination µ2 +
4λ′(u2 +d2 +s2) by µ̄2, and expressing the flavorless mass
matrices in the ideally mixed frame,

m2
π+ = µ̄2 + 4λ(u2 + d2 − ud) + 2βs, (3)

m2
K+ = µ̄2 + 4λ(u2 + s2 − su) + 2βd, (4)

m2
η

m2
η′

= eigv
(

µ̄2 + 2λ(u2 + d2) − 2βs −β
√

2(u + d)
−β

√
2(u + d) µ̄2 + 4λs2

)
, (5)

m2
a+
0

= µ̄2 + 4λ(u2 + d2 + ud) − 2βs, (6)

m2
κ+ = µ̄2 + 4λ(u2 + s2 + su) − 2βd, (7)

m2
σ

m2
f0

= eigv (8)

×
(

µ̄2 + 4λ′(u + d)2 + 6λ(u2 + d2) + 2 + βs (4λ′s + β)
√

2(u + d)
(4λ′s + β)

√
2(u + d) µ̄2 + 8λ′s2 + 12λs2

)
,

φss̄−η′
=

1
2

arctan
−2

√
2β(u + d)

2λ(u2 + d2 − 2s2) − 2βs
, (9)

φss̄−f0 =
1
2

arctan

× 2
√

2(4λ′s + β)(u + d)
4λ′[(u + d)2 − 2s2] + 6λ(u2 + d2 − 2s2) + 2βs

, (10)

where “eigv” means the eigenvalues of the matrix which
follows.

Let us first discuss the flavor symmetric limit u = d =
s. Then the pseudoscalar decay constants are equal, fP =
21/2u = fπ = fK , while the mixing angles Θη′−singlet =
φss̄−η′ −arctan

√
2 and Θσ−singlet = φss̄−σ +arctan(1/

√
2)

vanish, and one has 4 nondegenerate physical masses for
the octet and singlet mesons mP8, mS8, mP0, mS0. Then
there are also simple relations between the 5 model pa-
rameters λ, λ′, µ̄2, β and u = d = s and the 4 physical
masses and the decay constant fP :

λ = (3m2
S8 − 2m2

P0 − m2
P8)/(12f2

P ), (11)
λ′ = (m2

S0 − m2
S8 − m2

P8 + m2
P0)/(12f2

P ), (12)
µ̄2 = (−3m2

S8 + 5m2
P8 + 4m2

P0)/6, (13)

β = (m2
P8 − m2

P0)/(3
√

2fP ), (14)

u = d = s = 〈σuū〉 = 〈σdd̄〉 = 〈σss̄〉 = fP /
√

2. (15)

It is obvious that we can reparametrize the theory in terms
of these physical quantities, which can be kept fixed in the
renormalization, as long as flavor symmetry is exact. (If
one chooses the same tree-level values for the parameters
λ, µ2, β as found below in (16) and λ′ = 1 but for u =
d = s the average value, 75.05 MeV, or fP = 106 MeV,
one would have mP8 = 384 MeV, mP0 = 956 MeV, mS8 =
1086 MeV, mS0 = 741 MeV.) Thus these masses can be
thought of as already “unitarized”. On the other hand the
original parameters and the induced tri-meson couplings
will be renormalized from the tree-level values.

Now breaking the flavor symmetry (s 6= u = d) we
have only one more parameter, given by fK − fπ, and it
is evident that this breaking splits the degeneracy in the
mass spectrum from 4 independent masses to 8 masses and
generates two mixing angles. Thus one gets several tree-
level predictions in particular for the scalars (Table 1). Of
course now we expect these tree-level predictions to receive
corrections from the unitarization, but for small symmetry
breaking (experimentally (s − u)/s ≈ 0.308) one would
expect these corrections not to be larger than this, i.e.
< 30%.
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Table 1. Predicted masses in MeV and mixing angles for
two values of the λ′ parameter. The asterisk means that
mπ, mK and m2

η + m2
η′ are fixed by experiment together with

fπ =92.42MeV and fK =113MeV

Quantity Model λ′ = 1 Model λ′ = 3.75 Experiment

mπ 137∗) 137∗) 137 [3]
mK 495∗) 495∗) 495 [3]
mη 538∗) 538∗) 547.3 [3]
mη′ 963∗) 963∗) 957.8 [3]
Θη′−singlet -5.0◦ -5.0◦ (-16.5±6.5)◦ [3]
ma0 1028 1028 983 [3]
mκ 1123 1123 1430 [3]
mσ 651 619 400–1200 [3]
mf0 1229 1188 980 [3]
Θσ−singlet 21.9◦ 32.3◦ (28-i8.5)◦ [9]

We can fix 5 of the 6 parameters, leaving λ′ free, by
the 5 experimental quantities from the pseudoscalar sec-
tor alone: mπ, mK , m2

η + m2
η′ , fπ = 92.42 MeV and fK =

113 MeV [3], which all are accurately known from experi-
ment. One finds that at the tree level

λ = 11.57, µ̄2 = 0.1424 GeV2, β = −1701 MeV,

u = d = 65.35 MeV, s = 94.45 MeV. (16)

The remaining λ′ parameter changes only the σ and f0
masses and their trilinear couplings, not those of the pseu-
doscalars. Gavin et al. [6] ask for a group theoretical rea-
son for this simplification. In fact, graphically it is easy
to see that the λ′ term can only break the OZI rule for
the scalars, which can couple to the vacuum, but for the
pseudoscalars the λ′ term must leave the OZI rule intact.
Therefore, λ′ and µ affect the pseudoscalars only through
the combination µ̄2 = µ2 + 4λ′(u2 + d2 + s2).

It is of some interest that the simple Gell-Mann–Okubo
mass formula for the mixing does not give the same result
for the mixing angle between η and η′ as our model. This
is because there is flavor symmetry breaking also in the
anomaly terms βd and βs in (3)–(10) above. E.g. for the
octet pseudoscalar mass one gets from (3)–(10) (4m2

K −
m2

π)/3 = 542.5 MeV and a mixing angle of Θss̄−η′
=

−12.7◦. This would be closer to the conventional mixing
angle (−10◦ to −23◦) [3], than our model −5.0◦, where
the octet η8 mass is 566.1 MeV.

Some of the couplings of σ and f0 depend sensitively on
λ′, since λ′ changes the small ideal mixing angle, φss̄−f0 . It
turns out below that λ′ must be small, compared to λ, in
order to fit the trilinear couplings. By putting λ′ = 1 one
gets a reasonable compromise for most of these couplings.
With λ′ ≈ 3.75 one almost cancels the OZI rule breaking
coming from the determinant term, and the scalar mixing
becomes near ideal (for λ′ = −β/(4s) = 4.5 the cancella-
tion is exact).

As can be seen from Table 1 the predictions are not far
from the experimental masses taken as a0(980), f0(980),
K∗

0 (1430), and σ(500). For a discussion of the existence

of the σ(500) see my recent Frascati talk [4], which also
includes some preliminary results of the present paper.
Considering that one expects from our previous UQM
analysis of the scalars [9] and our discussion above that
unitarity corrections can have magnitudes of up to 30%
and should go in the right direction compared to experi-
ment, one must conclude that these results are even better
than expected. Similar mass analyses as in Table 1 have
been done in [6,7], although with somewhat different in-
put data.

4 Trilinear couplings at the tree level

The trilinear coupling constants follow from the
Lagrangian after one has made the shift Σ → Σ + V .
The most important spp couplings are at the tree level,
when expressed in terms of the original parameters:

gκ+K0π+ = 4λ(d − u + s) − 2β, (17)

gκ+K+η = −4λu sinφss̄−η′
+ (2

√
2λs + β

√
2)

× cos φss̄−η′
, (18)

gκ+K+η′ = 4λu cos φss̄−η′
+ (2

√
2λs + β

√
2)

× sinφss̄−η′
, (19)

gσπ+π− = 2
√

2 cos φss̄−f0(u + d)[λ + 2λ′]

− sinφss̄−f0(8λ′s + 2β), (20)

gσK+K− = cos φss̄−f0
√

2[λ(4u − 2s) + 4λ′(u + d) + β]

+4 sinφss̄−f0 [λ(u − 2s) − 2λ′s], (21)

gf0π+π− = 2
√

2 sinφss̄−f0(u + d)[λ + 2λ′]

+ cos φss̄−f0(8λ′s + 2β), (22)

gf0K+K− = sinφss̄−f0
√

2[λ(4u − 2s) + 4λ′(u + d) + β]

−4 cos φss̄−f0 [λ(u − 2s) − 2λ′s], (23)

ga0πη = cos φss̄−η′
2
√

2λ(u + d) − 2β sinφss̄−η′
, (24)

ga0πη′ = sinφss̄−η′
2
√

2λ(u + d) + 2β cos φss̄−η′
, (25)

ga0K+K− =
√

2[λ(4u − 2s) − 4λ′(d − u) − β]. (26)

In fact these can be written in more useful forms in terms
of the predicted physical masses and mixing angles and
decay constants:

gκ+K0π+ = (m2
κ − m2

π)/(
√

2fK), (27)

gκ+K+η = −
√

3 sin(φss̄−η′ − 35.26◦)

×(m2
κ − m2

η)/(2fK), (28)

gκ+K+η′ =
√

3 cos(φss̄−η′ − 35.26◦)

×(m2
κ − m2

η′)/(2fK), (29)

gσπ+π− = cos φss̄−f0(m2
σ − m2

π)/fπ, (30)

gσK+K− = −
√

3 sin(φss̄−f0 − 35.26◦)
×(m2

σ − m2
K)/(2fK), (31)

gf0π+π− = sinφss̄−f0(m2
f0

− m2
π)/fπ, (32)

gf0K+K− =
√

3 cos(φss̄−f0 − 35.26◦)
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Table 2. Predicted couplings
∑

i g2
i /4π (in GeV2), when λ′ = 1, compared with

experiment and predicted widths with experiment (in MeV). (We have used isospin
invariance to get the sum over charge channels, when there are data for one channel
only.) The predicted f0 → ππ width is extremely sensitive to the value of λ′ (for
λ′ = 3.75 it nearly vanishes) and unitarity effects as discussed in the text. Also the
a0πη coupling is very sensitive to loop corrections due to the KK̄ threshold

Process
∑

i g2
i /4π

∑
i g2

i /4π
∑

i Γi

∑
i Γi

in model in experiment model experiment

κ+ → K0π+ + K+π0 7.22 - 678 278 ± 23 [3,10]
κ+ → K+η 0.28 ≈ 0[10] 13 < 26 [10]
σ → π+π− + π0π0 2.17 1.95 [11] 574 300–1000 [3]
σ → K+K− + K0K̄0 0.16 0.004 [11] 0 0
f0 → π+π− + π0π0 1.67 0.765+0.20

−0.14 [12] see text 40–100 [3]
f0 → K+K− + K0K̄0 6.54 4.261.78

−1.12 [12] 0 0
a+
0 → π+η 2.29 0.57 [12] 273 see text 50–100 [3]

a+
0 → K+K̄0 2.05 1.34+0.36

−0.28 [12] 0 0

×(m2
f0

− m2
K)/(2fK), (33)

ga0πη = cos φss̄−η′
(m2

a0
− m2

η)/fπ, (34)

ga0πη′ = sinφss̄−η′
(m2

a0
− m2

η′)/fπ, (35)

ga0K+K− = (m2
a0

− m2
K)/fK . (36)

where we inserted arctan(1/
√

2) = 35.26◦. In Table 2 8
different spp couplings are compared with quoted experi-
mental numbers. In some of the channels of Table 2 the res-
onance is below threshold and the widths therefore vanish
at the resonance mass. However, the coupling constants
have recently been determined through a loop diagram
from φ → KK̄ → γππ and φ → KK̄ → γπη (albeit
in a somewhat model dependent way) by the Novosibirsk
group [11,12]. For channels where the phase space is large,
it is important that one includes a form factor related to
the finite size of physical mesons. In the 3P0 quark pair
creation model a radius of ≈0.8 fm leads to a gaussian form
factor, as in the formula below, where k0 ≈ 0.56 GeV/c (as
was found in the UQM [9]). Thus the widths are computed
from the formula

Γ (m) =
∑

isospin

g2
i

8π

kcm(m)
m2 e−[kcm(m)/k0]2 . (37)

As can be seen from Table 2 most of the couplings have
magnitudes not far from the experimental ones. Only the
f0 → ππ and a0 → πη couplings and widths come out
a bit large, but these are very sensitive to higher order
loop corrections due to the KK̄ threshold, and f0 → ππ
is extremely sensitive to the scalar near-ideal mixing angle
and λ′. If one chooses λ′ = 3.75 this mixing angle nearly
vanishes (φss̄−f0 = −3.0◦) together with the f0 → ππ cou-
pling (c.f. (32)). From our experience with the UQM [9]
the a0 → KK̄ peak width, when unitarized, is reduced,
because of the KK̄ threshold, by a factor of up to 5. There-
fore one cannot expect that the tree-level couplings should
agree better with the data than what those of Table 2 do.
After all, this is a very strong coupling model (λ = 11.57,

leading to large g2
i /4π) and higher order effects should be

important.

5 Conclusions

In summary, I find that the linear sigma model with three
flavors, at the tree level, works much better than what is
generally believed. When the 6 model parameters are fixed
mainly by the pseudoscalar masses and decay constants,
one predicts the 4 scalar masses and mixing angle to be
near those of the experimentally observed nonet a0(980),
f0(980), σ(500), K∗

0 (1430). Also 8 couplings/widths of the
scalars to two pseudoscalars are predicted reasonably close
to their presently known, rather uncertain experimental
values. The agreement is good enough considering that
some of these are expected to have large higher order cor-
rections. The model works, in my opinion, just as well
as the naive quark model works for the heavier nonets. A
more detailed data comparison would become meaningful,
after one has included higher order effects, i.e. after one
has unitarized the model, e.g., along the lines of the UQM
[9].

Those working on chiral perturbation theory and non-
linear sigma models usually point out that the linear
model does not predict all low energy constants correctly.
However, one should remember that the energy regions of
validity are different for the two approaches. Chiral pertur-
bation theory usually breaks down when one approaches
the first scalar resonance. The linear sigma model, on the
other hand, includes the scalars from the start and can
be a reasonable interpolating model in the intermediate
energy region near 1 GeV, where QCD is too difficult to
solve.

These results strongly favor the interpretation that
the a0(980), f0(980), σ(500), and K∗

0 (1430) belong to the
same nonet, and that they are the chiral partners of the
π, η, η′, and K. If the latter are believed to be unitarized
qq̄ states, so are the light scalars a0(980), f0(980), σ(500),
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and K∗
0 (1430), and the broad σ(500) should be interpreted

as an existing resonance. The σ is a very important hadron
indeed, as is evident in the sigma model, because this is
the boson which gives the constituent quarks most of their
mass and thereby it gives also the light hadrons most of
their mass. Therefore, it is natural to consider the σ(500)
as the Higgs boson of the strong interactions.
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